

Intra-arterial catheter Angiography (IACA)

Last updated: September 5, 2017

TECHNIQUES OF CATHETERIZATION
Anesthesia
Catheter & guidewire
Access
After catheterization
Contrast
X-ray contrast
Indocyanine green (ICG)
TECHNIQUE OF IMAGE ACQUISITION
Projections
Frame rate
Indications
CONTRAINDICATIONS
Preangiography workup
COMPLICATIONS
Types of Detectable Abnormalities
SPINAL ANGIOGRAPHY
Indications
Contraindication
Complication
INTERVENTIONAL NEURORADIOLOGY
Complications
Catheters
Embolization materials
Onyx
Coils
Stents
Balloons
Intracarotid Amobarbital (Wada) test
Antiplatelets, Anticoagulants
Closure device (for femoral artery)
NEUROANGIOGRAPHY CPT AND ICD CODES AND PAYMENT GUIDE → see p. D61a >>
CEREBROVASCULAR SURGERY → see p. Op350 >>

IACA - gold standard study of CNS vessels and great vessels of neck using radiographs during injection of intravascular contrast media.

- angiography is *not useful* in evaluation of peripheral nervous system or neuromuscular diseases.
- first described by Moniz in 1927.

DIGITAL SUBTRACTION VENOUS ANGIOGRAPHY is no longer widely used (requires large amounts of contrast + unreliable in detecting plaque ulcerations and in differentiating carotid stenosis from complete occlusion).

TECHNIQUES OF CATHETERIZATION

ANESTHESIA

• mild sedation and LOCAL ANAESTHESIA (4-5 mL of lidocaine ± bicarbonates)

- indications for GENERAL ANAESTHESIA:
 - 1) very **anxious / restless** patients
 - 2) interventional endovascular procedures.

CATHETER & GUIDEWIRE

- hydrophilic guidewires greatly facilitate catheterization of cerebral vessels.
- choose guidewire of appropriate size; too small guidewire facilitates blood reflux into catheter which can clot and be source of emboli.
- use soft-tipped J-shaped guidewire (to avoid intimal trauma).
- advance catheter over wire (to avoid intimal trauma).
- never advance wire beyond fluoro screen (unless it is going to arm).

ACCESS

- TRANSFEMORAL route (SELDINGER technique guided fluoroscopically) is used almost exclusively;
 - puncture of axillary / brachial artery or direct cervical puncture of carotid artery are only rarely performed.
- use clamp and fluoro clamp tip should be at mid of femoral head.
- palpate femoral pulse, inject local anesthetic, and puncture skin (slightly below groin crease) at 45° angle
 - if hitting bone, usually you are too medial
 - if unsuccesful, often withdraw and flush needle with heparin
 - once in artery, advance guideware and do fluoro (if passes to left side of spine, means in aorta); incise skin and dilate with mosquito tip.
 - withdraw needle and advance dilator over wire; pull out wire with unscrewing dilator cap.
 - advance larger wire; pull dilator and advance sheath; pull wire and unscrew sheath cap (if not, it will leak blood)
 - tape sheath with Tegaderm in place; connect heparin line (flush, make sure no air bubbles; check for blood flash back; then set heparin drip at 1 drop/second)
- insertion of **femoral sheath** (not necessary for straightforward cases) is useful in complex cases change of catheter during procedure is anticipated, or for interventional procedures.
- heparin-coated **guide wire** is passed through hub of needle into lumen of artery.
- pigtail **catheter** over guidewire into ascending aortic arch
 - most frequently used catheters are 4F or 5F with tapered J-shaped tip.

After shape, smoothness, and patency of proximal right CCA, right subclavian artery, left CCA, and left subclavian artery are inspected → <u>selective internal carotid</u> and/or <u>vertebral artery</u> injections.

- usually vessels are cannulated in order R VA, R CCA, L CCA, L VA.
- 0.035-in guidewire with soft, straight tip is used to exchange pigtail catheter for either simple angle-tip catheter (e.g. one with HN1 shape) or one with more complex hook or short-radius, curved shape.
 - guidewire (chosen for exchange) may have variable degree of flexibility in distal several centimeters near tip.
- in *elderly* or those with *significant atheromatous disease* at carotid bifurcation, *carotid bifurcation* should be visualized under fluoroscopy or with angiographic run, before advancing guidewire into internal carotid artery.
- vertebral injections are performed with catheter in VA near origin of VA to avoid spasm;
 - use manual contrast injection into VA (power injection often dislodges catheter from VA ostia)
 - Valsalva maneuver during VA run may reflux contrast medium into contralateral VA.
 - very rarely neither VA can be catheterized → inject subclavian artery during blood pressure cuff inflation (reduces flow of contrast medium down arm).

- once catheter is positioned in appropriate vessel, *DOUBLE FLUSH TECHNIQUE* (withdrawing blood into one syringe and saline flushing from another) is used, to minimize risks of embolism.
- when doing **ECA** angio inject contrast *above lingual artery* (because contrast injection is painful + we dont need opacification there)

AFTER CATHETERIZATION

- closing device (to use closing device, vessel has to be ≥ 4 mm diameter):
 - a) boomerang
 - b) **St. Jude AngioSeal** online info >> video >>
 - c) **Perclosure ProGlide** places purse string in arterial wall
- femoral artery is *compressed* to prevent hematoma for 5 minutes complete occlusion + 3 minutes partial occlusion + 2 minutes gradual release total 10 minutes (longer if on Plavix; 30 minutes if no closure device was used).
- patient must remain horizontal flat at least for 2 hours (6 hours if case was complicated or no closure device was used).
- evaluate **puncture site** and **distal pulses** thigh hematoma, distal emboli (loss of pedal pulses).

CONTRAST

X-RAY CONTRAST

- use *low-osmolality* water-soluble iodinated **CONTRAST MEDIA** either *non-ionic* (better!) or *ionic* dimers. further discussion about contrast media → see p. D49 >>
- <u>standard concentration</u> (for modern digital angiography) <u>150 mg IODINE /ml</u>; higher concentration (up to 320 mg I /ml) may be necessary for common carotid artery injections, high flow lesions (such as large AVMs).
- contrast is injected manually or with automatic pump:

internal carotid / **vertebral artery** digital subtraction angiography - 6–8 ml of contrast medium at rate of 3–5 ml/s;

external carotid artery - less forceful & lower-volume injections.

N.B. avoid of iodine contrast in *diabetics who are getting oral antidiabetic agents like metformin* - risk of **lactic acidosis**!!!

INDOCYANINE GREEN (ICG)

- contrast used intraoperatively (e.g. during AVM surgery).
- peak spectral absorption at about 800 nm.
- binds tightly to plasma proteins (becomes confined to vascular system).
- half-life 150-180 seconds (removed exclusively by liver).

TECHNIQUE OF IMAGE ACQUISITION

Today, most cerebral angiography is carried out on **digital subtraction angiography** (**DSA**) system (but perfectly adequate angiograms can be obtained with **conventional serial film-screen** technology).

• DSA allows injection of contrast medium at *smaller volume and concentration*.

N.B. aortic arch study is part of standard cerebral angiogram (esp. in evaluation of ischemic cerebrovascular disease - lesions or anomalous vascular origins in region of aortic arch may have impact on treatment planning!)

PROJECTIONS

Carotid angiography:

- 1) lateral view centered on pituitary fossa.
- 2) AP view with PETROUS RIDGE projected approximately over roof of orbit.
- 3) ipsilateral 30° *anterior oblique views* most common projection (esp. for investigation of aneurysms).

Vertebral angiography:

- 1) lateral view
- 2) **AP view** with PETROUS RIDGE superimposed on lower border of orbit.
- 3) half-axial (Townes) view
- **biplane angiography** (simultaneous acquisition of two projections) is major advantage in neuroangiography.
- **3D rotational angiography** *rotating X-ray tube* allows acquisition of volumetric data sets, which are post-processed on computer; following removal of bony structures, high-resolution images of cerebral vessels can be viewed from any angle (e.g. 3D view of aneurysm morphology and its neighboring vessels).

FRAME RATE

- filming is acquired during *arterial*, *capillary*, and *venous* phases.
- routinely 2-3 images/sec for arterial phase and 1–2 images/sec for venous phase.
- investigation of high flow lesions or certain types of aneurysms benefits from higher frame rates.

INDICATIONS

ANGIOGRAPHY - mainstay for neurovascular investigation in past.

- non-invasive techniques (Doppler sonography, MRA, CTA) have replaced IACA for number of diagnostic indications.
- current indications for IACA:
 - 1) integral part of interventional procedures.
 - 2) aneurysms, AVMs angiogram is gold standard!
 - 3) carotid artery disease (to confirm significant stenosis suspected noninvasively; to detect subtle dissections).
 - 4) documenting patency of basilar artery (after MRA fails to do it)
 - 5) intracranial vasculitis (MRA / CTA have poor resolution of small vessels).
 - N.B. angiography also does not reliably image vessels < 0.1-0.5 mm (not helpful in diagnosing lacunar infarctions).
 - 6) preoperative to assess tumor vascularity (± preoperative embolization) glomus jugulare tumors, meningiomas.
 - 7) to resolve discrepancies between two non-invasive methods.
 - 8) to identify *artery of Adamkiewicz* prior to aortic aneurysm repair.

CONTRAINDICATIONS

- 1) history of untoward reactions to contrast media.
 - H: well hydration before and after procedure + PREDNISONE 50 mg orally (13, 7, and 1 hour prior to procedure) + DIPHENHYDRAMINE 50 mg orally (1 hr prior to procedure)
- 2) *recent cerebral ischemia* may react poorly to angiography (esp. ionic contrast media); IACA is used in thrombectomy / IA thrombolytic treatment for acute stroke (benefits outweigh added risk from contrast media).

N.B. **anticoagulant drugs** do not contraindicate arteriography, provided prothrombin level is within normal therapeutic range.

PREANGIOGRAPHY WORKUP

- 1. Coagulation studies: CBC, platelets, PT and PTT.
- 2. **Renal function**: electrolytes, BUN, creatinine.

COMPLICATIONS

- 1. **Stroke** (0.5-2.3%; death < 0.1%) due to:
 - 1) cerebral *embolism* from catheter / guidewires
 - 2) damage to arteries by catheter / guidewire (spasm, thrombosis, dissection).
- 2. Rarely, intracranial aneurysm ruptures (result of injection under high pressure).
- 3. Local complications bleeding
- 4. Complications of iodinated contrast material (allergic reactions, renal damage, etc).
- <u>greatest morbidity of all imaging procedures</u> angiography should *never* be carried out if it is clear that results will not influence management!
- contrast injection is uncomfortable (warn patient if performed under local anaesthetic):
 - **external carotid artery** hot feeling in face, 'funny taste' in mouth;
 - **vertebral artery** flashing lights in eyes (up to cortical blindness for several days); in *dolichoectasia of basilar artery* reversible brainstem dysfunction & acute short-term memory loss (due to slow percolation of contrast material prolonged exposure of brain).
- risks increased in *sickle cell disease* (H: reduce HbSS level to < 20% through transfusions).

TYPES OF DETECTABLE ABNORMALITIES

- 1. Abnormal size / contour of lumen
- 2. Abnormal distribution of vessels
- 3. Abnormal sequences of vascularization (early or late)
- 4. Displacement of vessels mass effect.

SPINAL ANGIOGRAPHY

- costly, time-consuming procedure with definite morbidity!
- **DEXAMETHASONE** (4 mg q6h, start 24 h before procedure) indications:
 - 1) AVM
 - 2) intramedullary tumor

- uncomfortable and prolonged generally under GENERAL ANAESTHESIA.
- **bladder catheterization** (sphincter function may be impaired).
- IM or IV **spasmolytic agent** to reduce bowel movement.
- only *low-osmolar* contrast agents.
- 5F–7F viscero-femoral catheter is introduced by femoral artery puncture (preferably through sheath).
- slow, gentle injections of 2–3 ml contrast medium into each of posterior intercostal and lumbar arteries on each side.
- AP imaging at 1 frame every 2 s over 10–20 s.
- opacification of corresponding hemivertebra indicates satisfactory injection.
- ventilation is suspended during each series.
- arteries injected:

cervical region - both vertebral arteries (near their origins), deep cervical arteries.

thoracic region - each *posterior intercostal artery* on each side.

lumbar region - each *lumbar artery* on each side, *median and lateral sacral branches* of internal iliac arteries.

• therapeutic **embolization** may be carried out.

INDICATIONS

- 1) suspected **vascular malformations** or **tumors** of spinal cord, meninges or vertebral column (after positive MRI or myelogram)
- 2) **investigation of SAH** after negative cerebral angiography (alternative cervical spine MRI looking of abnormal T1 flow voids as sign of vascular malformation).
- 3) demonstration of major arterial supply to spinal cord before any spinal surgery.

CONTRAINDICATION

- patients considered unfit for surgery.

COMPLICATION

- deterioration in clinical myelopathy (relatively common but usually transient).

INTERVENTIONAL NEURORADIOLOGY

- A. **Thrombolysis** / **Thrombectomy** of acute arterial or venous thrombosis.
- B. **Detachable coil therapy** for aneurysms (not amenable to standard surgical clipping)
- C. **Particulate / liquid adhesive embolization** for AVM, tumors (preoperative embolization reduces bleeding).
- D. **Intraarterial chemotherapy** for tumors.
- E. **Balloon angioplasty** for stenosis / vasospasm.
- F. **Balloon occlusion** for carotid-cavernous and vertebral fistulas.
- G. *Endovascular treatment* of vein of Galen malformations.
- risks are comparable to those of neurosurgery rather than radiology.
- made possible because of small catheters (as small as 2-3 French) and guide-wires that can be navigated into selected branches of vasculature.
- whenever CTA is needed (preop or postop), always order CTA head + CTA neck + pCT.

COMPLICATIONS

- 1. **Radiation damage** (40%; of these, 30% are permanent): hair loss
 - exposures > 2 Gy are common in interventional neuroradiology despite modern radiation-minimizing technology.

CATHETERS

Guide catheter – usually kept in ICA Microcatheter – reach target

EMBOLIZATION MATERIALS

ONYX

- cohesive (not adhesive)

COILS

 detachable coils have positive charge - negatively charged platelets and red blood cells are attracted to this site → induce significant occlusion of aneurysms during coiling.

STENTS

• **high radial force*** **stents** (e.g. balloon-expandable stents) induce significant endothelial injury \rightarrow more platelet aggregation and thrombus formation.

*vs. less traumatic **low radial force** nitinol self-expanding **stents**.

BALLOONS

• <u>balloon-assisted coil embolization (BACE):</u> use of antiplatelet agents or antiplatelet function testing **prior** to procedure is not supported (Class C evidence); WFITN recommends **post-treatment ASPIRIN**.

Intracarotid Amobarbital (Wada) test

See p. E11 >>

ANTIPLATELETS, ANTICOAGULANTS

ANTIPLATELETS – see p. $1595(5) \gg$

• if STENT is left – HEPARIN for 12-24 hours, continue dual antiplatelet therapy (DAT) with P2Y12 receptor antagonist (such as CLOPIDOGREL, PRASUGREL, or TICAGRELOR) for **3-6 months** (later, stent becomes covered with endothelium and no longer at risk for thrombosis) + lifelong ASPIRIN.

CLOSURE DEVICE (FOR FEMORAL ARTERY)

<u>Boomerang</u> is <u>preferred</u> – use AngioSeal (leaves collagen foreign body) only if cannot use boomerang:

- 1) "too high stick" above inferior epigastric artery cannot apply pressure@
- 2) heparin use intraop (i.e. when intervention is done)

After boomerang is applied, change angle to make it work; if fails – hold 30 min manual pressure \rightarrow flat for 4 hours

<u>BIBLIOGRAPHY</u> for ch. "Neurovascular Examination" → follow this LINK >>

Viktor's Notes[™] for the Neurosurgery Resident Please visit website at www.NeurosurgeryResident.net