Spinal Tumor Surgery (techniques)

Last updated: April 12, 2020

INTRAMEDULLARY TUMORS

<table>
<thead>
<tr>
<th>Procedure</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative</td>
<td>1</td>
</tr>
<tr>
<td>Monitoring</td>
<td>1</td>
</tr>
<tr>
<td>Approach</td>
<td>1</td>
</tr>
<tr>
<td>Dura</td>
<td>1</td>
</tr>
<tr>
<td>Cord</td>
<td>1</td>
</tr>
<tr>
<td>Tumor</td>
<td>1</td>
</tr>
<tr>
<td>Closure</td>
<td>1</td>
</tr>
<tr>
<td>Postoperative, Prognosis</td>
<td>3</td>
</tr>
</tbody>
</table>

INTRAMEDULLARY TUMORS

Surgical extirpation is treatment of choice for benign tumors! (cures have been reported only after complete surgical resections)

PREOPERATIVE

- steroids in perioperative period (start at least 24 h prior to surgery; begin tapering 3-5 days after surgery).
- baseline urodynamic studies!

PROCEDURE

These are high-risk operations that require special expertise in spine and microsurgical techniques.

- it is sometimes recommended to have two surgeons in this operation (or an experienced assistant).

MONITORING

Monitor spinal cord function using intraoperative electrophysiology (real-time feedback regarding possible ischemia or retraction injury):

1. somatosensory-evoked potentials (SEEP)
2. motor-evoked potentials (MEP)
3. EMG (extremity muscles, anal sphincter)

- spinal cord is sensitive to decreased perfusion - avoid hypotension (keep MAP > 85!)

Alterations in evoked potentials:

- prompt cessation of dissection (until potentials recover) - changes are mostly transient and are not predictive for postoperative neurologic outcome.
- cord irrigated with warm normal saline ± papaverine.
- any retractors should be loosened.
- increase blood pressure.
- verify the depth of anesthesia, presence of hypotension or hypothermia.
- transfuse blood if needed.
- give additional steroids.
- if nothing helps, terminate surgery (consider expandable duraplasty to allow for cord swelling).

APPROACH

- depending on tumor location – either laminectomy (posterior approach) or craniectomy (anterior approach).

POSTERIOR APPROACH

- patient under general anesthesia (TIVA – to allow monitoring) in prone position.
- if tumor spans several spinal levels ➔ wide laminectomy (laminoplasty* in children):
 - removing all lamina as single unit en bloc with footplate ("loster tail") ➔ at the end place back and suture to the facet/jars with silk sutures (drill bone holes with C bit) - to protect spinal cord, to lessen risk of subsequent spinal deformity.
 - laminectomy should be of sufficient size to allow visualization of healthy cord above and below neoplasm.
 - when using a posterior approach for ventral and lateral lesions, the spinal cord can be released by cutting the denticulate ligament bilaterally at the level of the lesion, above and below - this maneuver will help rotating the cord to gain further access to the lesion.

DURAL

- prior to dural opening, tumor is localized with intraoperative ultrasound or spinal stereotaxy.
- perfect hemostasis before opening dura (epidural bleeding only tends to get worse once dura is opened); wax bone edges then lay 0.5x3 patties along gutters to absorb blood ooze.
- open dura under microscopic magnification.
- midline durotomy extending above and below the level of the lesion as confirmed by intraoperative ultrasound.
- be mindful of potential adhesions of the spinal cord or vascular structures to the undersurface of the dura - operating on previously resected or radiated tumors may present a special challenge - err on the conservative side as so not to compromise spinal cord function.
- place 4-0 silk tuck-ups to retain dura open.

CORN

Under microscope, linear* midline** myelotomy at thinnest area between tumor and spinal cord.

- to spare vertically running white matter tracts.
- **between the sensory fibers: ecartement lesions may be approached through dural root entry zone

- dorsal midline must be studied carefully to identify the median raphe so that injury to the posterior columns is avoided.
 - pattern of the dorsal rons can help with this identification.
 - visualize the adjacent normal cord and follow midline raphe across the tumor (some tumors may be growing further in one hemispheric than the other and may actually rotate or shift the dorsal midline).
 - electrical mapping of the posterior columns is also helpful - stimulate with bipolar fork where it is safe to cut.
 - if tumor has exophytic component, this is initial area of approach (i.e. pia mater is opened directly over tumor), i.e. debulk any exophytic component prior to addressing tumor located within parenchyma.
- dorsal vasculature is saved by dissecting it from the pia and rotating it to one side of the spinal cord:
 - blood vessels crossing the dorsal midline or penetrating into the dorsal midline are coagulated with fine bipolar forceps on the lowest coagulation setting.
TUMOR

- *try to find cleavage plane to dissect* tumor around, *nonvascular tumors can be removed in piecemeal fashion (vascular tumors – en bloc).*
- *Rhinon dissectors, Beaver blade, sharp canal knives, microbipolar cautery,* and *Fukushima microsuctions* – use #6 Rhiton dissector to sweep the border along with very gentle traction on the tumor with a fine-tipped forceps

McCabe Canal Knife:

- defining the plane of dissection between the tumor and the cord can be difficult (*prooperative T2*- weighted MRI must be thoroughly studied to identify the cyst-tumor junction that can be used to begin the dissection between tumor and spinal cord)
- upon entering lesion, send biopsy for histopathology
- tumors tend to be avascular and may have true capsule (or definable plane).
 - if ill-defined plane is present, risk-to-benefit ratio for aggressive removal is not clear (e.g. developmental tumors can be quite adherent to spinal cord).
 - for biopsy-proven high-grade* lesions, only biopsy and dural patch graft (to enlarge space for spinal cord) may be alternate approach to attempted resection.
- rapid progression even after aggressive resections

EPENDYMOMAS have plane – easy to dissect; blood supply to the ependymoma arises from the branches of the anterior spinal artery penetrating through the ventral median raphe - these vessels are coagulated and divided as they are encountered on the ventral surface of the tumor.

ASTROCYTOMAS do not have plane (tumor cells infiltrating among axons of the spinal cord – debulk, i.e. resection is limited to the portion of the tumor that can be clearly defined as distinct from normal cord; in cases of cord compression, where the astrocytoma needs to be debulked, portions of the tumor can be resected, which are usually discolored (i.e., gray or yellow) relative to the white matter; tumors tend to be avascular and may have true capsule (or definable plane). If frozen section shows tumor to be malignant → surgery is aborted (→ radiotherapy).

- debulking instruments: *NICO Myriad side-cutting dissector, Cavtron ultrasonic surgical aspirator (CUSA), fine-tipped contact laser (CO2, KTP), any cystoscyringes encountered should be drained, septations divided (spinal cord pulsations demonstrating adequate decompression are monitored).*
- for hemostasis use irrigating bipolar cautery (e.g. MALIB), irrigation and absorbable gelatin sponge with thrombin.
- any vessels en passage should be spared.
- when operating on tumors of *conus medullaris,* filum terminale should probably also be removed.

CLOSE UP

- defect in neural tissue does not need to be closed; alternative - approximate myelotome edges with Proline (but leave gaps – to prevent intramedullary hematoma).
- watertight dural closure (may use dural grafting, tissue adhesives overuture line) to minimize formation of pseudomeningocele or CSF leak.
 - irrigate intradurally – leave no blood.
 - **simple running 4-0 silk / 5-0 Proline suture (ideally, Hemo-Seal (HS-7) needle)**
 - Valsalva maneuver → layers of Surgicel + Duraseal / Tisseel / Adherus
 - epidural drain may be left in place (but risk of infection or CSF tracking along drain). H: place drain in epidural space (CSF).
 - consider instrumentation to prevent postoperative kyphosis.

TUMOR

- *try to find cleavage plane to dissect* tumor around, *nonvascular tumors can be removed in piecemeal fashion (vascular tumors – en bloc).*
- *Rhinon dissectors, Beaver blade, sharp canal knives, microbipolar cautery,* and *Fukushima microsuctions* – use #6 Rhiton dissector to sweep the border along with very gentle traction on the tumor with a fine-tipped forceps

McCabe Canal Knife:

- defining the plane of dissection between the tumor and the cord can be difficult (*prooperative T2*- weighted MRI must be thoroughly studied to identify the cyst-tumor junction that can be used to begin the dissection between tumor and spinal cord)
- upon entering lesion, send biopsy for histopathology
- tumors tend to be avascular and may have true capsule (or definable plane).
 - if ill-defined plane is present, risk-to-benefit ratio for aggressive removal is not clear (e.g. developmental tumors can be quite adherent to spinal cord).
 - for biopsy-proven high-grade* lesions, only biopsy and dural patch graft (to enlarge space for spinal cord) may be alternate approach to attempted resection.
- rapid progression even after aggressive resections

EPENDYMOMAS have plane – easy to dissect; blood supply to the ependymoma arises from the branches of the anterior spinal artery penetrating through the ventral median raphe - these vessels are coagulated and divided as they are encountered on the ventral surface of the tumor.

ASTROCYTOMAS do not have plane (tumor cells infiltrating among axons of the spinal cord – debulk, i.e. resection is limited to the portion of the tumor that can be clearly defined as distinct from normal cord; in cases of cord compression, where the astrocytoma needs to be debulked, portions of the tumor can be resected, which are usually discolored (i.e., gray or yellow) relative to the white matter; tumors tend to be avascular and may have true capsule (or definable plane). If frozen section shows tumor to be malignant → surgery is aborted (→ radiotherapy).

- debulking instruments: *NICO Myriad side-cutting dissector, Cavtron ultrasonic surgical aspirator (CUSA), fine-tipped contact laser (CO2, KTP), any cystoscyringes encountered should be drained, septations divided (spinal cord pulsations demonstrating adequate decompression are monitored).*
- for hemostasis use irrigating bipolar cautery (e.g. MALIB), irrigation and absorbable gelatin sponge with thrombin.
- any vessels en passage should be spared.
- when operating on tumors of *conus medullaris,* filum terminale should probably also be removed.

CLOSE UP

- defect in neural tissue does not need to be closed; alternative - approximate myelotome edges with Proline (but leave gaps – to prevent intramedullary hematoma).
- watertight dural closure (may use dural grafting, tissue adhesives overuture line) to minimize formation of pseudomeningocele or CSF leak.
 - irrigate intradurally – leave no blood.
 - **simple running 4-0 silk / 5-0 Proline suture (ideally, Hemo-Seal (HS-7) needle)**
 - Valsalva maneuver → layers of Surgicel + Duraseal / Tisseel / Adherus
 - epidural drain may be left in place (but risk of infection or CSF tracking along drain). H: place drain in epidural space (CSF).
 - consider instrumentation to prevent postoperative kyphosis.
POSTOPERATIVE, PROGNOSIS

- see p. Onc50 ->
 • flat for 3 days.